Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982525

RESUMO

The lifetime effects of space irradiation (IR) on left ventricular (LV) function are unknown. The cardiac effects induced by space-type IR, specifically 5-ion simplified galactic cosmic ray simulation (simGCRsim), are yet to be discovered. Three-month-old, age-matched, male C57BL/6J mice were irradiated with 137Cs gamma (γ; 100, 200 cGy) and simGCRsim (50 and 100 cGy). LV function was assessed via transthoracic echocardiography at 14 and 28 days (early), and at 365, 440, and 660 (late) days post IR. We measured the endothelial function marker brain natriuretic peptide in plasma at three late timepoints. We assessed the mRNA expression of the genes involved in cardiac remodeling, fibrosis, inflammation, and calcium handling in LVs harvested at 660 days post IR. All IR groups had impaired global LV systolic function at 14, 28, and 365 days. At 660 days, 50 cGy simGCRsim-IR mice exhibited preserved LV systolic function with altered LV size and mass. At this timepoint, the simGCRsim-IR mice had elevated levels of cardiac fibrosis, inflammation, and hypertrophy markers Tgfß1, Mcp1, Mmp9, and ßmhc, suggesting that space-type IR may induce the cardiac remodeling processes that are commonly associated with diastolic dysfunction. IR groups showing statistical significance were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). The observed dose-response shape did not indicate a lower threshold at these IR doses. A single full-body IR at doses of 100-200 cGy for γ-IR, and 50-100 cGy for simGCRsim-IR decreases the global LV systolic function in WT mice as early as 14 and 28 days after exposure, and at 660 days post IR. Interestingly, there is an intermediate time point (365 days) where the impairment in LV function is observed. These findings do not exclude the possibility of increased acute or degenerative cardiovascular disease risks at lower doses of space-type IR, and/or when combined with other space travel-associated stressors such as microgravity.


Assuntos
Cardiomiopatias , Exposição à Radiação , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Remodelação Ventricular , Viagem , Função Ventricular Esquerda , Fibrose , Inflamação
2.
Front Cardiovasc Med ; 9: 855181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783863

RESUMO

There are unique stressors in the spaceflight environment. Exposure to such stressors may be associated with adverse effects on astronauts' health, including increased cancer and cardiovascular disease risks. Small extracellular vesicles (sEVs, i.e., exosomes) play a vital role in intercellular communication and regulate various biological processes contributing to their role in disease pathogenesis. To assess whether spaceflight alters sEVs transcriptome profile, sEVs were isolated from the blood plasma of 3 astronauts at two different time points: 10 days before launch (L-10) and 3 days after return (R+3) from the Shuttle mission. AC16 cells (human cardiomyocyte cell line) were treated with L-10 and R+3 astronauts-derived exosomes for 24 h. Total RNA was isolated and analyzed for gene expression profiling using Affymetrix microarrays. Enrichment analysis was performed using Enrichr. Transcription factor (TF) enrichment analysis using the ENCODE/ChEA Consensus TF database identified gene sets related to the polycomb repressive complex 2 (PRC2) and Vitamin D receptor (VDR) in AC16 cells treated with R+3 compared to cells treated with L-10 astronauts-derived exosomes. Further analysis of the histone modifications using datasets from the Roadmap Epigenomics Project confirmed enrichment in gene sets related to the H3K27me3 repressive mark. Interestingly, analysis of previously published H3K27me3-chromatin immunoprecipitation sequencing (ChIP-Seq) ENCODE datasets showed enrichment of H3K27me3 in the VDR promoter. Collectively, our results suggest that astronaut-derived sEVs may epigenetically repress the expression of the VDR in human adult cardiomyocytes by promoting the activation of the PRC2 complex and H3K27me3 levels.

3.
Front Physiol ; 12: 706185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721055

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared a pandemic by the WHO in March 2020. As of August 2021, more than 220 countries have been affected, accounting for 211,844,613 confirmed cases and 4,432,802 deaths worldwide. A new delta variant wave is sweeping through the globe. While previous reports consistently have demonstrated worse prognoses for patients with existing cardiovascular disease than for those without, new studies are showing a possible link between SARS-CoV-2 infection and an increased incidence of new-onset heart disease and diabetes, regardless of disease severity. If this trend is true, with hundreds of millions infected, the disease burden could portend a potentially troubling increase in heart disease and diabetes in the future. Focusing on heart failure in this review, we discuss the current data at the intersection of COVID, heart failure, and diabetes, from clinical findings to potential mechanisms of how SARS-CoV-2 infection could increase the incidence of those pathologies. Additionally, we posit questions for future research areas regarding the significance for patient care.

4.
Pharmacol Res ; 171: 105766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34271160

RESUMO

Circular RNAs (circRNAs) are a new class of covalently circularized noncoding RNAs widely expressed in the human heart. Emerging evidence suggests they have a regulatory role in a variety of cardiovascular diseases (CVDs). This review's current focus includes our understanding of circRNA classification, biogenesis, function, stability, degradation mechanisms, and their roles in various cardiovascular disease conditions. Our knowledge of circRNA, the relatively recent member of the noncoding RNA family, is still in its infancy; however, recent literature proposes circRNAs may be promising targets for the understanding and treatment of CVD.


Assuntos
Doenças Cardiovasculares/genética , RNA Circular , Animais , Humanos , RNA Circular/metabolismo
5.
Front Physiol ; 11: 612722, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551838

RESUMO

Diabetic cardiomyopathy (DMCM) is the leading cause of mortality and morbidity among diabetic patients. DMCM is characterized by an increase in oxidative stress with systemic inflammation that leads to cardiac fibrosis, ultimately causing diastolic and systolic dysfunction. Even though DMCM pathophysiology is well studied, the approach to limit this condition is not met with success. This highlights the need for more knowledge of underlying mechanisms and innovative therapies. In this regard, emerging evidence suggests a potential role of non-coding RNAs (ncRNAs), including micro-RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) as novel diagnostics, mechanisms, and therapeutics in the context of DMCM. However, our understanding of ncRNAs' role in diabetic heart disease is still in its infancy. This review provides a comprehensive update on pre-clinical and clinical studies that might develop therapeutic strategies to limit/prevent DMCM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...